

Extended-Gamut Update

Remaining Challenges, Neglected Opportunities

mike@mspgraphics.com www.mspgraphics.com

Flexibly defined

Printing with larger than "normal"enhancedCMYK gamut

WHAT IS THE PURPOSE?

Print more colorful images, typically from RGB sources

WHAT IS THE PURPOSE?

▶ Emulate spot colors with a fixed palette of inks

How is it done?

► CMYK with strong secondary inks (multicolor)

How is it done?

- Addition of one or more strong CMY inks
- Printing to higher densities

How is it done?

Addition of special targeted colors

WHY?

Less ink mixing and inventory

Easier production planning

Simpler proofing

Reduced press washups

Faster job prep

Lower costs

WHAT MAKES AN EG SYSTEM?

Design & Image Editing

File Conversion

Color management

Processing tools

Output

GOOD **SYSTEM** GOALS:

Convert existing jobs

No change in design practices

Accurate conversion of images and vector objects

Accurate screen previews and proofs

Predictive reporting (spot colors)

Automatic processing

GOOD INDUSTRY GOALS:

Uniformity of results

Transparent processes, generic methods

Widespread adoption of ISO specs

Adaptability to any printing type

How are we doing?

Some tests...

I. CONVERTING IMAGES

The Multicolor Separation

TEST: Convert an RGB Image

RGB Original

Converted to 7C

Two Systems, Two Outcomes

System A

System B

Two Systems, Two Outcomes

Two Separation Schemes

System A

System B

Overprint Rules

	System A	System B	System C
C+O:	OK	Barred	OK
M+G	OK	Barred	OK
Colors 5+ 6	OK	Barred	Barred
Colors 6+7	OK	Barred	Barred
Colors 5+7	OK	Barred	Barred
Additional special colors	OK	Barred	Barred

Profiles: A Variety of Sampling Schemes—a Method to the Madness?

Compare CMYK Consistency

2. CONVERTING SPOT COLORS

Beyond Solids ...

Key considerations

- Accuracy
- Printability
- Reproduction of tints, overprints
- Matching of previously printed jobs
- System flexibility

How are tints calculated?

Spectral measurement (e.g., ISO-17972 / CxF/X4)

Over substrate

Over black

Spectral Calculation Model

Simple arithmetical interpolation

Calculation: 92 C 90 V

Solid

Interpolation: 46 C 45 V

What are the results?

Conversion of spectral measurement per ISO-17972 (CxF/X4)

Simple arithmetical interpolation

How are overprints computed?

A. Calculation from spectral measurement

B. Simple arithmetical interpolation

Dark Blue over process cyan

TEST: Convert a Spot Color Design: Tints and Overprints

Composite

Cyan plate

Reflex Blue plate

Results:

Α

E

Design Complexity = Conversion Challenges

3. MULTICOLOR IN APPLICATIONS

A matter of multicolor "blindness"

Design applications: limitations, inconsistencies

Incorrectly displays spot/n-color overprints

Display of spot colors affected by "alternate color space"

Incorrectly displays multicolor objects
Cannot convert to multicolor

Incorrectly displays spot/n-color overprints

Cannot use MC source profiles, working spaces

Info palette doesn't show n-color channels

So where do things stand?

Remaining challenges:

- No agreed-upon criteria for evaluating ECG systems or developing features
- Inconsistent implementation of profiling, image and spot color conversions
- Persistence of "folk wisdom," unexamined "rules" for multicolor printing
- Poor integration of applications into MC workflows
- Persistence of proprietary multicolor profile formats
- Product bundling limiting flexibility and inhibiting innovation

Where are some neglected opportunities?

- More intuitive designing with "live" print previews of MC output appearance in authoring apps
- Matching of existing conventional CMYK/spot color jobs for easy reprinting and faster makereadies
- Use of hi-fidelity RGB images for more appealing packaging
- Democratization of "fine-art" printing
- Simplified softproofing using multicolor-RGB conversions

ECG-Relevant Developments

SCTV (ISO 20654): Improved characterization of spot color halftone gain

Pantone EG libraries: Standard EG sample book and Lab targets (CMYKOGV/AM screening only)

PDF 2.0 and CXF/X-4: Extended embedded characterizations of process and spot colors, print order, screening, many other improvements. Must be implemented by applications.

ICCMax: Spectral profile connection space for more efficient (and versatile) characterization of devices

ECG Studies

Expanded Gamut Study 2019

Jan-June 2019

Leader: Abhay Sharma sharma@ryerson.ca

Professional Colour Communication for Multiprimary Printing (ECG)

Jan 2019 to Feb 2022

Leader: Andreas Kraushaar Kraushaar @fogra.org

Thank You

